A comparison of N and C uptake during brown tide (Aureococcus anophagefferens) blooms from two coastal bays on the east coast of the USA
详细信息    查看全文
文摘
Blooms of the brown tide pelagophyte, Aureococcus anophagefferens, have been reported in coastal bays along the east coast of the USA for nearly two decades. Blooms appear to be constrained to shallow bays that have low flushing rates, little riverine input and high salinities (e.g., >28). Nutrient enrichment and coastal eutrophication has been most frequently implicated as the cause of A. anophagefferens and other blooms in coastal bays. We compare N and C dynamics during two brown tide blooms, one in Quantuck Bay, on Long Island, NY in 2000, and the other in Chincoteague Bay, at Public Landing, MD in 2002, with a physically similar site in Chincoteague Bay that did not experience a bloom. We found that the primary forms of nitrogen (N) taken up during the bloom in Quantuck Bay were ammonium and dissolved free amino acids (DFAA) while the primary form of N fueling production at both sites in Chincoteague Bay was urea. At both Chincoteague sites, amino acid carbon (C) was taken up while urea C was not. Even though A. anophagefferens has the ability to take up organic C, during the bloom at Chincoteague Bay, photosynthetic uptake of bicarbonate was the dominant pathway of C acquisition by the >1.2μm size fraction during the day. C uptake by cells <5.0μm was insufficient to meet cellular C demand based on the measured N uptake rates and the C:N ratio of particulate material. While cells >1.2μm did not take up much organic C during the day, smaller cells (>0.2μm) did. Peptide hydrolysis appeared to play an important role in mobilizing organic matter in Quantuck Bay, where amino acids contributed substantially to N and C uptake, but not in Chincoteague Bay. Dissolved organic N (DON), dissolved organic C (DOC) concentrations and the DOC/DON ratio were higher and total dissolved inorganic N (DIN) concentrations were lower at the bloom site in Chincoteague Bay than at the nonbloom site in the same bay. We conclude that A. anophagefferens is capable of using a wide variety of N and C compounds, and that nutrient inputs, biotic interactions and the dominant recycling pathways determine which compounds are available and which metabolic pathways are active at a particular site.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700