Multifunctions of dual Zn/Mg ion co-implanted titanium on osteogenesis, angiogenesis and bacteria inhibition for dental implants
详细信息    查看全文
文摘
In order to improve the osseointegration and long-term survival of dental implants, it is urgent to develop a multifunctional titanium surface which would simultaneously have osteogeneic, angiogeneic and antibacterial properties. In this study, a potential dental implant material-dual Zn/Mg ion co-implanted titanium (Zn/Mg-PIII) was developed via plasma immersion ion implantation (PIII). The Zn/Mg-PIII surfaces were found to promote initial adhesion and spreading of rat bone marrow mesenchymal stem cells (rBMSCs) via the upregulation of the gene expression of integrin α1 and integrin β1. More importantly, it was revealed that Zn/Mg-PIII could increase Zn2+ and Mg2+ concentrations in rBMSCs by promoting the influx of Zn2+ and Mg2+ and inhibiting the outflow of Zn2+, and then could enhance the transcription of Runx2 and the expression of ALP and OCN. Meanwhile, Mg2+ ions from Zn/Mg-PIII increased Mg2+ influx by upregulating the expression of MagT1 transporter in human umbilical vein endothelial cells (HUVECs), and then stimulated the transcription of VEGF and KDR via activation of hypoxia inducing factor (HIF)-1α, thus inducing angiogenesis. In addition to this, it was discovered that zinc in Zn/Mg-PIII had certain inhibitory effects on oral anaerobic bacteria (Pg, Fn and Sm). Finally, the Zn/Mg-PIII implants were implanted in rabbit femurs for 4 and 12 weeks with Zn-PIII, Mg-PIII and pure titanium as controls. Micro-CT evaluation, sequential fluorescent labeling, histological analysis and push-out test consistently demonstrated that Zn/Mg-PIII implants exhibit superior capacities for enhancing bone formation, angiogenesis and osseointegration, while consequently increasing the bonding strength at bone-implant interfaces. All these results suggest that due to the multiple functions co-produced by zinc and magnesium, rapid osseointegration and sustained biomechanical stability are enhanced by the novel Zn/Mg-PIII implants, which have the potential application in dental implantation in the future.Statement of significanceIn order to enhance the rapid osseointegration and long-term survival of dental implants, various works on titanium surface modification have been carried out. However, only improving osteogenic activity of implants is not enough, because angiogenesis and bacteria inhibition are also very important for dental implants. In the present study, a novel dental implant material-dual Zn/Mg ion co-implanted titanium (Zn/Mg-PIII) was developed, which was found to have superior osteoinductivity, pro-angiogenic effects and inhibitory effects against oral anaerobes. Furthermore, synergistic effects of Zn/Mg ions on osteogenic differentiation of rBMSCs and the possible mechanism were discovered. In addition, rapid osseointegration and sustained biomechanical stability are greatly enhanced by Zn/Mg-PIII implants, which may have the potential application in dental implantation in the future. We believe this paper may be of particular interest to the readers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700