Non-invasive imaging of skin physiology and percutaneous penetration using fluorescence spectral and lifetime imaging with multiphoton and confocal microscopy
详细信息    查看全文
文摘
New multiphoton and confocal microscope technologies and fluorescence lifetime imaging techniques are now being used to non-invasively image, in space (three dimensions),in time, in spectra, in lifetime and in fluorescence anisotropy (total of 7 dimensions), fluorescent molecules in in situ and in vivo biological tissue, including skin. The process involves scanning a 2D area and measuring fluorescence at a given tissue depth below the surface after excitation by a laser beam with a wavelength within the one-photon or two-photon absorption band of the fluorophores followed by the stacking together of a series of 2D images from different depths to reconstruct the full spatial structure of the sample. Our aim in this work is to describe the principles, opportunities, limitations and applications of this new technology and its application in defining skin morphology, disease and skin penetration in vitro and in vivo by drugs, chemicals and nanoparticles. A key emphasis is in the use of fluorescence lifetime imaging to add additional specificity and quantitation to the detection of the various exogenous chemicals and nanoparticles that may be applied to the skin as well as endogenous fluorescent species in the skin. Examples given include equipment configuration; components in skin autofluorescence in various skin strata; imaging and quantification of coexisting drugs and their metabolites; skin pH; nanoparticle zinc oxide skin penetration; liposome delivery of drugs to deeper tissues; and observations in skin ageing and in various skin diseases.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700