Novel bit-parallel multiplier for defined by all-one polynomial using generalized Karatsuba algorithm
详细信息    查看全文
文摘
In this paper, a novel bit-parallel multiplier for finite field defined by irreducible all-one polynomial (AOP) is proposed. We utilize a generalized Karatsuba algorithm (KA) to reduce the number of coefficient multiplications and the redundant representation to simplify polynomial modular reduction. Explicit formulae with respect to the space and time complexity of the proposed multiplier are given. By evaluating the asymptotic lower bound of the complexity, the selection of the generalized KA and decomposition of m are investigated to obtain the optimal result. Consequently, theoretical complexity analysis proved that our architecture requires even fewer logic gates than previous proposals, while it still maintains relatively low time delay. For a special class of generated with AOPs, it even matches the best known multipliers found in the literatures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700