An adaptive dual-information FMBEM for 3D elasticity and its GPU implementation
详细信息    查看全文
文摘
Combined the boundary element method (BEM) with the fast multipole method (FMM), the fast multipole BEM (FMBEM) is proposed to solve large scale problems. A key issue the FMBEM has to address is the element integrals, which usually consumes much time when the FMM for N-body problems is directly used. In order to accelerate element integrals, we present an adaptive FMBEM with a particular dual-information tree structure which contains both node and element information, and use it for 3D elasticity in this paper. In our adaptive FMBEM, the Multipole Expansions (ME), Moment-to-Local (M2L) translation, Local Expansions (LE), and the Near Field Direct Computation (NFDC) are level independent so that they are suitable for parallel computing. The examples show that the time of ME and NFDC in our FMBEM is almost 1/3 and 1/2 compared with that in a node-based FMBEM which deals with FMBEM in a particle interaction mode. We develop two GPU parallel strategies to accelerate the processes of ME, M2L and NFDC and implement them on a NVIDIA GTX 285 GPU, and the speedups to an Intel Core2 Q9550 CPU using 4 cores can reach 10.7 for ME, 16.2 for M2L, and 3.6 for NFDC.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700