Impact resistance of hybrid glass fiber reinforced epoxy/nanoclay composite
详细信息    查看全文
文摘
The effect of nanoclay addition in Glass Fiber Reinforced Epoxy (GFRE) composites on impact response was studied. The epoxy nanocomposite matrix with 1.5 and 3.0 wt% loading of I.30E nanoclay was produced by high shear mixing. Hybrid GFRE nanoclay composite plates were manufactured by hand layup and hot pressing techniques using electrical grade-corrosion resistant (E-CR) glass fiber mats. The laminates were then subjected to low-velocity impact with energies between 10 and 50 J. Addition of nanoclay was found to improve peak load and stiffness of GFRE. Nanoclay loading of 1.5 wt% resulted in optimum properties, with 23% improvement in peak load and 11% increase in stiffness. A significant reduction in physical damage was also observed for hybrid nanocomposite samples as compared to GFRE. This was mainly attributed to transition in damage mechanism due to nanoclay addition. Clay agglomeration in samples with 3.0 wt% loading contributed towards limiting the improvement in impact resistance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700