The Kinases LF4 and CNK2 Control Ciliary Length by Feedback Regulation of Assembly and Disassembly Rates
详细信息    查看全文
文摘
| Figures/TablesFigures/Tables | ReferencesReferences

Summary

Background

Many of the diverse functions of cilia depend upon tight control of their length. Steady-state length reflects a balance between rates of ciliary assembly and disassembly, two parameters likely controlled by a length sensor of unknown identity or mechanism.

Results

A null mutation in Chlamydomonas CNK2, a member of the evolutionarily conserved family of NIMA-related kinases, reveals feedback regulation of assembly and disassembly rates. cnk2-1 mutant cells have a mild long-flagella (lf) phenotype as a consequence of reduced rates of flagellar disassembly. This is in contrast to the strong lf mutant lf4-7, which exhibits an aberrantly high rate of assembly. Cells carrying both mutations have even longer flagella than lf4-7 single mutants do. In addition to their high rate of assembly, lf4-7 mutants have a CNK2-dependent increase in disassembly rate. Finally, cnk2-1 cells have a decreased rate of turnover of flagellar subunits at the tip of the flagellum, demonstrating that the effects on disassembly are compensated by a reduced rate of assembly.

Conclusions

We propose a model wherein CNK2 and LF4 modulate rates of disassembly and assembly respectively in a feedback loop that is activated when flagella exceed optimal length.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700