用户名: 密码: 验证码:
Near-IR responsive nanostructures for nanobiophotonics: emerging impacts on nanomedicine
详细信息    查看全文
文摘
Nanobiophotonics is an emerging field at the intersection of nanoscience, photonics, and biotechnology. Harnessing interactions of light with nanostructures enables new types of bioimaging, sensing, and light-activated therapy which can make a major impact on nanomedicine. Low penetration through tissue limits the use of visible light in nanomedicine. Near infrared (NIR) light (~ 780-1100 nm) can penetrate significantly further, enabling free-space delivery into deep tissues. This review focuses on interactions of NIR light with nanostructures to produce three effects: direct photoactivation, photothermal effects, and photochemical effects. Applications of direct photoactivation include bioimaging and biosensing using NIR-emitting quantum dots, materials with localized surface plasmon resonance (LSPR) in the NIR, and upconverting nanoparticles. Two key nanomedicine applications using photothermal effects are photothermal therapy (PTT), and photoacoustic (PA) imaging. For photochemical effects, we present the latest advances in in-situ upconversion and upconverting nanostructures for NIR activation of photodynamic therapy (PDT).

From the Clinical Editor

Nanobiophotonics is a relatively new field applying light for the interactions with nanostructures, which can be used in bioimaging, sensing, and therapy. As near infrared (NIR) light (~780-1100 nm) can have better tissue penetration, its clinical potential is far greater. In this review, the authors discussed the latest research on the applications of NIR light in imaging and therapeutics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700