Vibrational analysis of carbon nanotube-reinforced composite quadrilateral plates subjected to thermal environments using a weak formulation of elasticity
详细信息    查看全文
文摘
Superlative properties of nanocomposites have motivated considerable research efforts in recent years. Nanocomposite plates of quadrilateral shapes are important structural components used in a variety of engineering structures. This article aims to develop a variational formulation to describe the vibrational behavior of functionally graded (FG) nanocomposite straight-sided quadrilateral plates reinforced by carbon nanotubes (CNTs) in thermal environments. Various profiles of single-walled carbon nanotubes (SWCNTs) distribution along the thickness are taken into consideration. The mathematical formulation is developed in the variational form based on the first order shear defamation plate theory (FSDPT) with consideration of thermal effects. Discretization process of the energy functional is done on a computational domain using a mapping-differential quadrature (DQ) methodology. Discrete form of the governing equations is directly derived from a weak formulation which does not involve any transformation and discretization of the high order derivatives appeared in the equations of the strong form. Numerical results are given and compared with the ones reported in the literature to evaluate the convergence behavior and accuracy of the proposed solution. Subsequently, the influences of temperature on natural frequencies of the nanocomposite quadrilateral plates with different geometric parameters, CNT distributions in thickness direction and boundary conditions are investigated.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700