Minimizing biases associated with tracking analysis of submicron particles in heterogeneous biological fluids
详细信息    查看全文
文摘
Tracking the dynamic motion of individual nanoparticles or viruses offers quantitative insights into their real-time behavior and fate in different biological environments. Indeed, particle tracking is a powerful tool that has facilitated the development of drug carriers with enhanced penetration of mucus, brain tissues and other extracellular matrices. Nevertheless, heterogeneity is a hallmark of nanoparticle diffusion in such complex environments: identical particles can exhibit strongly hindered or unobstructed diffusion within microns of each other. The common practice in 2D particle tracking, namely analyzing all trackable particle traces with equal weighting, naturally biases towards rapidly diffusing sub-populations at shorter time scales. This in turn results in misrepresentation of particle behavior and a systematic underestimate of the time necessary for a population of nanoparticles to diffuse specific distances. We show here via both computational simulation and experimental data that this bias can be rigorously corrected by weighing the contribution by each particle trace on a ‘frame-by-frame’ basis. We believe this methodology presents an important step towards objective and accurate assessment of the heterogeneous transport behavior of submicron drug carriers and pathogens in biological environments.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700