Multiphase coatings from complex radiation curable polyurethane dispersions
详细信息    查看全文
文摘
The waterborne nature of radiation curable polyurethane dispersions largely respond to the current environmental concerns and do not require any additional coalescent since the film formation (drying) and hardening (photo-curing) take place in distinct steps. It is possible to design aqueous dispersions with distinct polymer particle populations resulting in micro-structured coatings with optimized properties over a wide range of curing conditions. Mixed dispersions based on hard and soft acrylated polyurethane particles were used as model systems for the present study. The minimum film formation temperature has been investigated as a function of the hard:soft polymer ratio. The elastic modulus of the dry coatings shows a reinforcing effect consistent with the inclusion of hard domains in a soft continuous matrix. However, the level of reinforcement is not properly predicted by the usual mechanical models and it is qualitatively accounted for by assuming a composition gradient (interphase) between the hard domains and the matrix. The multiple-phase structure was clearly established by Atomic Force Microscopy in agreement with thermal analysis data. Furthermore the local nanoscale mechanical properties were mapped using a new imaging mode based on real-time force-distance curve analysis. Finally, the coatings prepared using this multiple-phase pattern present a clear benefit over conventional homogeneous coatings by offering an improved balance of chemical and mechanical resistance in pigmented systems applied on melamine-coated MDF panels.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700