N-Myc down regulation induced differentiation, early cell cycle exit, and apoptosis in human malignant neuroblastoma cells having wild type or mutant p53
详细信息    查看全文
文摘
Neuroblastomas, which mostly occur in children, are aggressive metastatic tumors of the sympathetic nervous system. The failure of the previous therapeutic regimens to target multiple components of N-Myc pathway resulted in poor prognosis. The present study investigated the efficacy of the combination of N-(4-hydroxyphenyl) retinamide (4-HPR, 0.5 μM) and genistein (GST, 25 μM) to control the growth of human neuroblastoma cells (SH-SY5Y and SK-N-BE2) harboring divergent molecular attributes. Combination of 4-HPR and GST down regulated N-Myc, Notch-1, and Id2 to induce neuronal differentiation. Transition to neuronal phenotype was accompanied by increase in expression of e-cadherin. Induction of neuronal differentiation was associated with decreased expression of hTERT, PCNA, survivin, and fibronectin. This is the first report that combination of 4-HPR and GST mediated reactivation of multiple tumor suppressors (p53, p21, Rb, and PTEN) for early cell cycle exit (due to G1/S phase arrest) in neuroblastoma cells. Reactivation of tumor suppressor(s) repressed N-Myc driven growth factor mediated angiogenic and invasive pathways (VEGF, b-FGF, MMP-2, and MMP-9) in neuroblastoma. Repression of angiogenic factors led to the blockade of components of mitogenic pathways [phospho-Akt (Thr 308), p65 NF-κB, and p42/44 Erk 1/2]. Taken together, the combination of 4-HPR and GST effectively blocked survival, mitogenic, and angiogenic pathways and activated proteases for apoptosis in neuroblastoma cells. These results suggested that combination of 4-HPR and GST could be effective for controlling the growth of heterogeneous human neuroblastoma cell populations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700