Relaxation of silica glass surfaces before and after stress modification in a wet and dry atmosphere: molecular dynamics simulations
详细信息    查看全文
文摘
Previous molecular dynamics simulations have shown that compression of silica glass surfaces occurs upon formation of an interface with a model crystal and that a structural change caused by this process is retained after glass and crystal are separated. The remnant structural modification caused by this stress was an increase in the concentration of siloxane bond angles less than 150° in the near surface region of the glass. It was expected that the structural modification associated with interface formation and separation could represent an increase in the concentration of less stable siloxane bonds, particularly in the presence of water molecules. It was also recognized that a decreased stability could indicate greater reactivity with water molecules. Thus, water reaction on silica surfaces was simulated before and after stress modification and the subsequent structural relaxations in the glass surface were observed. Decreased stability, represented by a greater number of bond ruptures, existed after interface formation and removal. These bond ruptures were Si–O bonds breaking and reforming siloxane bonds with an angle nearer the average and also Si–O bonds breaking to react with water forming silanols. A greater number of silanols formed after interface formation and removal than before, demonstrating a greater reactivity with water after interface formation and separation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700