Conductivity analysis of epoxy/carbon nanotubes composites by dipole relaxation and hopping models
详细信息    查看全文
文摘
In this study it was used a numerical technique of successive approximations to estimate parameters of a conductivity model that includes the hopping process and the dipole relaxation for the purpose of describing the behavior of the conductivity measured on nanocomposites with carbon nanotubes in epoxy resin in the range of frequency of 100 Hz to 40 MHz. Two relaxation bands were detected, one with a response below 10 kHz and one above 10 MHz. For the first band, it was observed that the nanocomposites become more conductive, and its conductivity less temperature dependent, as the nanotube content increases. The second band is characterized by a large spread in relaxation time. The results show that the percolation threshold is below 0.15 vol% and that ‘ac’ hopping is the main transport process above 100 kHz, becoming dominant with respect to percolation at higher temperatures (>340 K).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700