Effect of cell seeding on neotissue formation in a tissue engineered trachea
详细信息    查看全文
文摘
Surgical management of long segment tracheal disease is limited by a paucity of donor tissue and poor performance of synthetic materials. A potential solution is the development of a tissue-engineered tracheal graft (TETG) which promises an autologous airway conduit with growth capacity.

Methods

We created a TETG by vacuum seeding bone marrow-derived mononuclear cells (BM-MNCs) on a polymeric nanofiber scaffold. First, we evaluated the role of scaffold porosity on cell seeding efficiency in vitro. We then determined the effect of cell seeding on graft performance in vivo using an ovine model.

Results

Seeding efficiency of normal porosity (NP) grafts was significantly increased when compared to high porosity (HP) grafts (NP: 360.3 ± 69.19 × 103 cells/mm2; HP: 133.7 ± 22.73 × 103 cells/mm2; p < 0.004). Lambs received unseeded (n = 2) or seeded (n = 3) NP scaffolds as tracheal interposition grafts for 6 weeks. Three animals were terminated early owing to respiratory complications (n = 2 unseeded, n = 1 seeded). Seeded TETG explants demonstrated wound healing, epithelial migration, and delayed stenosis when compared to their unseeded counterparts.

Conclusion

Vacuum seeding BM-MNCs on nanofiber scaffolds for immediate implantation as tracheal interposition grafts is a viable approach to generate TETGs, but further preclinical research is warranted before advocating this technology for clinical application.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700