Developing a power-efficient and low-cost 3D NoC using smart GALS-based vertical channels
详细信息    查看全文
文摘
Shorter global interconnects enable 3D NoC structures to offer higher performance, improved packaging density, and lower interconnect power consumption to CMPs and SoCs compared to their 2D counterparts. However, substantial challenges such as high peak temperatures, power densities and area footprints of vertical interconnects in each layer cannot be ignored. In this paper, a power and area efficient 3D NoC architecture based on power-aware Bidirectional Bisynchronous Vertical Channels (BBVC) is proposed as a solution to mitigate these challenges. Instead of using a pair of unidirectional channels for inter-layer communication, utilizing a dynamically self-configurable BBVC enables a system to benefit from low-latency nature of the vertical interconnects. In addition, based on the GALS implementation approach of the proposed channels, a forecasting-based dynamic frequency scaling technique for reducing the power consumption of the inter-layer communication is introduced. Simulation results show that the proposed architecture can reduce up to 47 % through-silicon via (TSV) area footprint and up to 18 % NoC power consumption with a slight performance degradation compared to a typical Symmetric 3D NoC.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700