Genetic modification of H2AX renders mesenchymal stromal cell-derived dopamine neurons more resistant to DNA damage and subsequent apoptosis
详细信息    查看全文
文摘
Aberrant production of reactive oxygen species (ROS) and its impact on the integrity of genomic DNA have been considered one of the major risk factors for the loss of dopaminergic neurons in Parkinson's disease (PD). Stem cell transplantation as a strategy to replenish new functional neurons has great potential for PD treatment. However, limited survival of stem cells post-transplantation has always been an obstacle ascribed to the existence of neurotoxic environment in PD patients.

Methods

To improve the survival of transplanted stem cells for PD treatment, we explored a new strategy based on the function of the H2AX gene (H2A histone family, member X) in determination of DNA repair and cell apoptosis. We introduced a mutant form Y142F of H2AX into dopamine (DA) neuron-like cells differentiated from bone marrow–derived mesenchymal stromal cells (BMSCs).

Results

Expression of H2AX(Y142F) renders DA neuron-like cells more resistant to DNA damage and subsequent cell death induced by ultraviolet irradiation and 1-methyl-4-phenylpyridinium (MPP+) treatment.

Discussion

This is a meaningful attempt to improve the sustainability of BMSC-derived dopamine neurons under a brain neurotoxic environment. Further studies are needed to evaluate the implications of our findings in stem cell therapy for PD and related diseases.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700