Bose-Einstein condensation transition studies for atoms confined in Laguerre-Gaussian laser modes
详细信息    查看全文
文摘
Multiply-connected traps for cold, neutral atoms fix vortex cores of quantum gases. Laguerre-Gaussian laser modes are ideal for such traps due to their phase stability. We report theoretical calculations of the Bose-Einstein condensation transition properties and thermal characteristics of neutral atoms trapped in multiply connected geometries formed by Laguerre-Gaussian (LGpl) beams. Specifically, we consider atoms confined to the anti-node of a LG01 laser mode detuned to the red of an atomic resonance frequency, and those confined in the node of a blue-detuned LG11 beam. We compare the results of using the full potential to those approximating the potential minimum with a simple harmonic oscillator potential. We find that deviations between calculations of the full potential and the simple harmonic oscillator can be up to 3 % -8 % for trap parameters consistent with typical experiments.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700