Prediction of sound velocity and compressibility via molecular simulation at fixed entropy
详细信息    查看全文
文摘
A molecular-level simulation route is proposed to compute the isentropic thermodynamic properties in a fluid system by Monte Carlo simulation at fixed entropy. The method involves computation of the pressure response of a system to an infinitesimal change in system density by introduction of a single molecule, while retaining the system volume as well as the absolute molar entropy. The probability for accepting a change in temperature during the Monte Carlo moves was weighted against the argument proposed by Smith et al. [W.R. Smith, M. Lísal, I. Nezbeda, Chem. Phys. Lett. 426 (2006) 436–440]. Application to fluid argon has confirmed superior accuracy for the technique within the gas state to yield results within 1.2 % of the measured values for the range of thermodynamic conditions investigated.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700