A predictive model and mechanisms associated with hydrogen production via hydrothermal reactions of sulfide
详细信息    查看全文
文摘
Hydrogen generation and the concurrent formation of sulfur products from hydrothermal reactions of aqueous sulfide solutions at pH values between 9 and 13 and temperatures between 280 and 330?¡ãC were studied. A hydrogen production model was developed by kinetic and statistical analysis of sulfide consumption rates and the ratio of hydrogen produced to sulfide consumed. Results showed that the amount of hydrogen generated in a given reaction may be predicted by a series of equations incorporating starting conditions such as the initial sulfide concentration, pH and temperature. The data from this study suggested that the overall hydrogen generation reaction mechanism consists of one or more elementary reactions which result in the formation of various sulfur products, such as polysulfides and sulfur oxyanions, depending on the reaction conditions. The possible specific sulfur compounds included pentasulfide (S52?), thiosulfate (S2O32?), trithionate (S3O62?) and sulfate (SO42?). The production rate constants of these products increased with temperature, but were independent of pH. Additionally, it was indicated that increasing the reaction temperature and/or pH resulted in the formation of sulfur products with higher oxidation numbers. This work suggests that the optimal mechanism for hydrogen generation via the sulfur redox cycle, taking into account the requirement for sulfide regeneration, is that which forms trithionate as the sole sulfur product.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700