Hydrogen production from ethanol for PEM fuel cells. An integrated fuel processor comprising ethanol steam reforming and preferential oxidation of CO
详细信息    查看全文
文摘
The aim of the work was to study the performance of ceria catalysts to convert ethanol to hydrogen in a combined system including ethanol steam reforming and PROX. The roles of the active oxide component, partially reduced ceria, and the metal component, Pt, in the ethanol steam reforming mechanism were investigated by diffuse reflectance infrared spectroscopy (DRIFTS) carried out under steady state reaction conditions. The main mechanism was found to proceed by (1) dissociative adsorption of ethanol to ethoxy species; (2) dehydrogenation of ethoxy species to adsorbed acetaldehyde; (3) oxidation of acetaldehyde species by ceria OH groups to acetate; (4) acetate demethanation to CH4 and carbonate species; (5) carbonate decomposition to CO2; and presumably (6) CH4 decomposition steps. Though Pt improved the initial ethanol conversion rate by facilitating hydrogen transfer and demethanation steps, the Pt–ceria interface was quickly lost to the buildup of carbon-containing species, thus hindering the Pt from effectively demethanating the acetate intermediate. Unpromoted ceria, though less active, was a significantly more stable catalyst.

The steps for the PROX reaction in the presence of acetaldehyde were found to include: (1) decomposition of acetaldehyde leading to CO and methane; (2) hydrogenation of acetaldehyde producing ethanol; and (3) oxidation of the CO.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700