Low-loss insulating-conductive ceramic composite with giant permittivity and high permeability using glass phase as separating layer
详细信息    查看全文
文摘
The control of dielectric loss in insulating-conductive ceramic composites is of great significance for the enhancement of the comprehensive performance of next-generation devices. In this work, a low-activity precursor co-sintering method was proposed to prepare low-loss BaTiO3(BTO)/Ni0.5Zn0.5Fe2O4(NZFO) ceramic composite by using 2PbO–B2O3(PBO) glass as insulating layer. XRD and SEM were used to reveal the phase composition and the morphology of the composite. Results showed that the conductive networks can be successfully cut off by PBO glass separating layer inside the composite (1−x)BTO/xNZFO where x is the molar fraction of NZFO ferrite, giving rise to decreased dielectric loss in a wide compositional range between x=0.1–0.7 while retaining considerable effective permittivity and initial permeability. Excess amount of PBO glass is not favorable for the formation of separating layer due to the chemical reactions occurring between the constituent phases and the glass phase; meanwhile, accompanied by the decrement in dielectric loss, the initial permeability of the composite decreases linearly with increasing PBO content.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700