Temporal frequency tuning of cortical face-sensitive areas for individual face perception
详细信息    查看全文
文摘
In a highly dynamic visual environment the human brain needs to rapidly differentiate complex visual patterns, such as faces. Here, we defined the temporal frequency tuning of cortical face-sensitive areas for face discrimination. Six observers were tested with functional magnetic resonance imaging (fMRI) when the same or different faces were presented in blocks at 11 frequency rates (ranging from 1 to 12 Hz). We observed a larger fMRI response for different than same faces - the repetition suppression/adaptation effect - across all stimulation frequency rates. Most importantly, the magnitude of the repetition suppression effect showed a typical Gaussian-shaped tuning function, peaking on average at 6 Hz for all face-sensitive areas of the ventral occipito-temporal cortex, including the fusiform and occipital 鈥渇ace areas鈥?(FFA and OFA), as well as the superior temporal sulcus. This effect was due both to a maximal response to different faces in a range of 3 to 6 Hz and to a sharp drop of the blood oxygen level dependent (BOLD) signal from 6 Hz onward when the same face was repeated during a block. These observations complement recent scalp EEG observations (Alonso-Prieto et al., 2013), indicating that the cortical face network can discriminate each individual face when these successive faces are presented every 160-170 ms. They also suggest that a relatively fast 6 Hz rate may be needed to isolate the contribution of high-level face perception processes during behavioral discrimination tasks. Finally, these findings carry important practical implications, allowing investigators to optimize the stimulation frequency rates for observing the largest repetition suppression effects to faces and other visual forms in the occipito-temporal cortex.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700