Comparison of the accuracy of kriging and IDW interpolations in estimating groundwater arsenic concentrations in Texas
详细信息    查看全文
文摘
Exposure to arsenic causes many diseases. Most Americans in rural areas use groundwater for drinking, which may contain arsenic above the currently allowable level, 10 碌g/L. It is cost-effective to estimate groundwater arsenic levels based on data from wells with known arsenic concentrations. We compared the accuracy of several commonly used interpolation methods in estimating arsenic concentrations in >8000 wells in Texas by the leave-one-out-cross-validation technique. Correlation coefficient between measured and estimated arsenic levels was greater with inverse distance weighted (IDW) than kriging Gaussian, kriging spherical or cokriging interpolations when analyzing data from wells in the entire Texas (p<0.0001). Correlation coefficient was significantly lower with cokriging than any other methods (p<0.006) for wells in Texas, east Texas or the Edwards aquifer. Correlation coefficient was significantly greater for wells in southwestern Texas Panhandle than in east Texas, and was higher for wells in Ogallala aquifer than in Edwards aquifer (p<0.0001) regardless of interpolation methods. In regression analysis, the best models are when well depth and/or elevation were entered into the model as covariates regardless of area/aquifer or interpolation methods, and models with IDW are better than kriging in any area/aquifer. In conclusion, the accuracy in estimating groundwater arsenic level depends on both interpolation methods and wells鈥?geographic distributions and characteristics in Texas. Taking well depth and elevation into regression analysis as covariates significantly increases the accuracy in estimating groundwater arsenic level in Texas with IDW in particular.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700