Gene expression profiling defines the role of ATP-exposed keratinocytes in skin inflammation
详细信息    查看全文
文摘

Background

Various environmental stimuli, e.g., mechanical stress, osmolarity change, oxidative stress, and microbial products trigger ATP release from cells. It is well known that ATP regulates cell growth, differentiation, terminal differentiation, and cell-to-cell communication in keratinocytes. Moreover, extracellular ATP stimulates the expression and release of IL-6 and modulates the production several chemokines by keratinocytes.

Objective

To investigate the role of ATP-stimulated keratinocytes in skin inflammation and immune response.

Methods

We identified genes whose expression is augmented in ATP-stimulated human keratinocytes by DNA microarray. These microarray data were validated by quantitative real-time RT-PCR. Furthermore, we confirmed the observed mRNA change at protein level by ELISA and Western blotting.

Results

The statistical analysis of the microarray data revealed that, besides IL-6, the expression of several novel genes such as IL-20, CXCL1-3, and ATF3 was significantly augmented in ATP-stimulated keratinocytes. These data was validated by quantitative real-time RT-PCR. We also confirmed the augmented production of IL-6, IL-20, CXCL1 by ELISA and that of ATF3 by Western blotting. Since both IL-6 and IL-20 that can stimulate STAT3 were produced by the ATP-stimulated keratinocytes, we examined their phosphorylation of STAT3. The study demonstrated biphasic activation of STAT3 after ATP stimulation, which was composed of a first peak at 1–2 h and a second peak at 12–24 h. The latter peak was significantly suppressed by anti-IL-6 antibody.

Conclusion

These studies characterized (1) STAT3 activation, (2) chemotaxis for neutrophils via CXCL1-3, and (3) ATF3 activation as possible roles of ATP-stimulated keratinocytes in skin inflammation and immune response.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700