Metrological Validation of a Measurement Procedure for the Characterization of a Biological Ultrasound Tissue-Mimicking Material
详细信息    查看全文
文摘
The speed of sound and attenuation are important properties for characterizing reference materials such as biological phantoms used in ultrasound applications. There are many publications on the manufacture of ultrasonic phantoms and the characterization of their properties. However, few studies have applied the principles of metrology, such as the expression of the uncertainty of measurement. The objective of this study is to validate a method for characterizing the speed of sound and the attenuation coefficient of tissue-mimicking material (TMM) based on the expression of the measurement of uncertainty. Six 60-mm-diameter TMMs were fabricated, three 10 mm thick and three 20 mm thick. The experimental setup comprised two ultrasonic transducers, acting as transmitter or receiver depending on the stage of the measurement protocol, both with a nominal center frequency of 5 MHz and an element diameter of 12.7 mm. A sine burst of 20 cycles and 20-V peak-to-peak amplitude at 5 MHz excited the transmitter transducer, producing a maximum pressure of 0.06 MPa. The measurement method was based on the through-transmission substitution immersion technique. The speed of sound measurement system was validated using a calibrated stainless-steel cylinder as reference material, and normalized errors were <0.8. The attenuation coefficient measurement method was validated using replicated measurements under repeatability conditions. The normalized error between the two measurement sets was <1. The proposed uncertainty models for the measurements of the speed of sound and the attenuation coefficient can help other laboratories develop their own uncertainty models. These validated measurement methods can be used to certify a TMM as a reference material for biotechnological applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700