L-extendable functions and a proximity scaling algorithm for minimum cost multiflow problem
详细信息    查看全文
文摘
In this paper, we develop a theory of new classes of discrete convex functions, called L-extendable functions and alternating L-convex functions, defined on the product of trees. We establish basic properties for optimization: a local-to-global optimality criterion, the steepest descend algorithm by successive k-submodular function minimizations, the persistency property, and the proximity theorem. Our theory is motivated by minimum cost free multiflow problem. To this problem, Goldberg and Karzanov gave two combinatorial weakly polynomial time algorithms based on capacity and cost scalings, without explicit running time. As an application of our theory, we present a new simple polynomial proximity scaling algorithm to solve minimum cost free multiflow problem in View the MathML source time, where n is the number of nodes, m is the number of edges, k is the number of terminals, A is the maximum of edge-costs, C is the total sum of edge-capacities, and View the MathML source denotes the time complexity to find a maximum flow in a network of n nodes and m edges. Our algorithm is designed to solve, in the same time complexity, a more general class of multiflow problems, minimum cost node-demand multiflow problem, and is the first combinatorial polynomial time algorithm to this class of problems. We also give an application to network design problem.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700