Hemodynamics of left internal mammary artery bypass graft: Effect of anastomotic geometry, coronary artery stenosis, and postoperative time
详细信息    查看全文
文摘
Although the left internal mammary artery (LIMA) bypass graft is the best choice for surgical revascularization, its hemodynamics are still complex and can result in long-term graft failure. Here, we performed a hemodynamic analysis of the LIMA-coronary artery with end-to-side/side-to-side anastomoses based on 15 patient-specific CTA images at various postoperative periods. We hypothesize that hemodynamic patterns are determined by the interplay of LIMA geometry, anastomotic configuration, and severity of native coronary artery stenosis, which are strongly affected by the postoperative time. A 3D finite volume method with the inlet pressure wave and outlet resistance boundary conditions was used to compute the distribution of pressure and flow, from which the time-averaged wall shear stress (TAWSS), oscillation shear index (OSI), time-averaged WSS gradient (TAWSSG), and transverse WSS (transWSS) were determined. To characterize the hemodynamic environment, we defined surface area ratios of low TAWSS (≤4 dynes/cm2), high OSI (≥0.15), TAWSSG (≥500 dynes/cm3), and transWSS (≥6 dynes/cm2) in the LIMA graft and at the anastomosis between LIMA graft and coronary artery. These ratios were determined by the interplay of multiple morphometric parameters in the LIMA-coronary artery, but increased with postoperative time. These findings have significant implications for understanding LIMA graft patency.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700