Atomic emission stratigraphy by laser-induced plasma spectroscopy: Quantitative depth profiling of metal thin film systems
详细信息    查看全文
文摘
Laser-induced plasma spectroscopy (LIPS) with a frequency-quadrupled Nd:YAG laser (266 nm, pulse duration: 4 ns) was applied to a metallic layer system consisting of an electrodeposited copper layer (30 渭m) on an aluminium substrate. A stratigraphic model describing the emission signal in dependence of the pulse number was developed, which can explain several effects originating from laser ablation of various thin top layers by means of the Gaussian beam cross section character. This model was applied to trace elements through layers with thicknesses that are in the range of the resolvable depth, given by the single-pulse ablation rate, by means of empirical fitting functions. Additionally, the contribution of redeposited bulk material to the characteristic shape of emission-traces when averaging spot arrays with varying spacing could be quantified. This can be used to estimate cross-contamination in analytical applications where ablations need to be performed at close spacing.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700