Liquid–liquid phase equilibrium of (piperidinium-based ionic liquid + an alcohol) binary systems and modelling with NRHB and PCP-SAFT
详细信息    查看全文
文摘
The phase diagrams for binary systems of {1-propyl-1-methylpiperidinium bis{(trifluoromethyl)sulfonyl}imide [PMPIP][NTf2] + an alcohol (butan-1-ol, pentan-1-ol hexan-1-ol, heptan-1-ol, octan-1-ol, decan-1-ol and undecan-1-ol} have been determined at atmospheric pressure using a dynamic method. The influence of an alcohol chain length is discussed for this ionic liquid (IL). A systematic decrease in the solubility is observed with an increase of the alkyl chain length of an alcohol. Liquid + liquid phase equilibrium (LLE) with an upper critical solution temperature was observed. The phase diagrams reported are compared to systems published earlier with the 1-alkyl-1-methylpiperidinium-based ionic liquid. The basic thermal properties of the pure IL, i.e. melting temperature and the enthalpy of fusion, the glass transition temperature and heat capacity at melting temperature have been measured using a differential scanning microcalorimetry technique. The density of [PMPIP][NTf2] as a function of temperature was measured. The results of the LLE correlation with two models viz. the lattice theory based on non-random hydrogen bonding (NRHB) and the Perturbed-Chain Polar Statistical Associating Fluid Theory (PCP-SAFT) are presented. Both models are capable of describing pure fluid properties of IL (densities and solubility parameters) by using one set of parameters and the LLE in binary systems. This is to our knowledge the first paper presenting the SAFT modelling of binary LLE in ionic liquid systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700