Mitochondrial superoxide reduction and cytokine secretion skewing by carbon nanotube scaffolds enhance ex vivo expansion of human cord blood hematopoietic progenitors
详细信息    查看全文
文摘
In this study, we report that surface functional groups of single walled carbon nanotubes (f-SWCNT) are critical for mediating survival and ex vivo expansion of hematopoietic stem and progenitor cells (HSPC) in human umbilical cord blood (UCB). In comparison to amide (− O-NH2) and polyethylene-glycol (− PEG) functionalized SWCNT, carboxylic acid (− COOH) variants gave optimal viability support which correlated with maximal reduction of lethal mitochondrial superoxides in HSPC. Cytokine array illustrated that f-SWCNT-COOH maintained higher proportion of HSPC associated cytokines and minimal level of differentiation promoting factors. Transplantation of f-SWCNT-COOH expanded grafts in sub-lethally irradiated immunodeficient mice resulted in higher engraftment of HSPC in bone marrow compared to control when they were co-transplanted with non-expanded cells from the same UCB. Expanded grafts mediated higher survival rate of mice compared to non-expanded grafts due to lower graft-versus-host-disease which is likely a consequence of proportion of immune cells in the grafts.

From the Clinical Editor

Umbilical cord blood (UCB) is a potential source of hematopoietic stem and progenitor (HSPC) cells. One major hurdle for its clinical use is the insufficient yield of cell number. The authors in this study elegantly demonstrated the importance of various functional groups on single-walled carbon nanotubes (f-SWCNT) in enhancing ex vivo expansion of HSPC in UCB. The findings may pave a way for having UCB as a source for HSPC for clinical use in the future.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700