Applying engineering and fleet detail to represent passenger vehicle transport in a computable general equilibrium model
详细信息    查看全文
文摘
A well-known challenge in computable general equilibrium (CGE) models is to maintain correspondence between the forecasted economic and physical quantities over time. Maintaining such a correspondence is necessary to understand how economic forecasts reflect, and are constrained by, relationships within the underlying physical system. This work develops a method for projecting global demand for passenger vehicle transport, retaining supplemental physical accounting for vehicle stock, fuel use, and greenhouse gas (GHG) emissions. This method is implemented in the MIT Emissions Prediction and Policy Analysis Version 5 (EPPA5) model and includes several advances over previous approaches. First, the relationship between per-capita income and demand for passenger vehicle transport services (in vehicle-miles traveled, or VMT) is based on econometric estimates and modeled using quasi-homothetic preferences. Second, the passenger vehicle transport sector is structured to capture opportunities to reduce fleet-level gasoline use through the application of vehicle efficiency or alternative fuel vehicle technologies, introduction of alternative fuels, or reduction in demand for VMT. Third, alternative fuel vehicles (AFVs) are represented in the EPPA model. Fixed costs as well as learning effects that could influence the rate of AFV introduction are captured explicitly. This model development lays the foundation for assessing policies that differentiate based on vehicle age and efficiency, alter the relative prices of fuels, or focus on promoting specific advanced vehicle or fuel technologies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700