Microtubule self-organisation depends upon gravity
详细信息    查看全文
  • 作者:Tabony ; J. ; Pochon ; N. ; Papaseit ; C.
  • 刊名:Advances in Space Research
  • 出版年:2001
  • 出版时间:2001
  • 年:2001
  • 卷:28
  • 期:4
  • 页码:529-535
  • 全文大小:606 K
文摘
The molecular processes by which gravity is transduced into biological systems are poorly, if at all, understood. Under equilibrium conditions, chemical and biochemical structures do not depend upon gravity. It has been proposed that biological systems might show a gravity dependence by way of the bifurcation properties of certain types of non-linear chemical reactions that are far-from-equilibrium. We have found that in-vitro preparations of microtubules, an important element of the cellular cytoskeleton, show this type of behaviour. On earth, the solutions show macroscopic self-ordering, and the morphology of the structures that form depend upon the orientation of the sample with respect to gravity at a critical moment at an early stage in the development of the self-organised state. An experiment carried out in a sounding rocket, showed that as predicted by theories of this type, no self-organisation occurs when the microtubules are assembled under low gravity conditions. This is an experimental demonstration of how a very simple biochemical system, containing only two molecules, can be gravity sensitive. At a molecular level this behaviour results from an interaction of gravity with macroscopic concentration and density fluctuations that arise from the processes of microtubule contraction and elongation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700