Neural plasticity and treatment-induced recovery of sentence processing in agrammatism
详细信息    查看全文
文摘
This study examined patterns of neural activation associated with treatment-induced improvement of complex sentence production (and comprehension) in six individuals with stroke-induced agrammatic aphasia, taking into account possible alterations in blood flow often associated with stroke, including delayed time-to-peak of the hemodynamic response function (HRF) and hypoperfused tissue. Aphasic participants performed an auditory verification fMRI task, processing object cleft, subject cleft, and simple active sentences, prior to and following a course of Treatment of Underlying Forms (TUF; Thompson et al., 2003), a linguistically based approach for treating aphasic sentence deficits, which targeted object relative clause constructions. The patients also were scanned in a long-trials task to examine HRFs, to account for any local deviations resulting from stroke, and perfusion images were obtained to evaluate regions of hypoperfused tissue. Region-of-interest (ROI) analyses were conducted (bilaterally), modeling participant-specific local HRFs in left hemisphere areas activated by 12 healthy age-matched volunteers performing the same task, including the middle and inferior frontal gyri, precentral gyrus, middle and superior temporal gyri, and insula, and additional regions associated with complex syntactic processing, including the posterior perisylvian and superior parietal cortices. Results showed that, despite individual variation in activation differences from pre- to post-treatment scans in the aphasic participants, main-effects analyses revealed a general shift from left superior temporal activation to more posterior temporoparietal areas, bilaterally. Time-to-peak of these responses correlated negatively with blood flow, as measured with perfusion imaging.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700