Defining the Cause of Skewed X-Chromosome Inactivation in X-Linked Mental Retardation by Use of a Mouse Model
详细信息    查看全文
文摘
Extreme skewing of X-chromosome inactivation (XCI) is rare in the normal female population but is observed frequently in carriers of some X-linked mutations. Recently, it has been shown that various forms of X-linked mental retardation (XLMR) have a strong association with skewed XCI in female carriers, but the mechanisms underlying this skewing are unknown. ATR-X syndrome, caused by mutations in a ubiquitously expressed, chromatin-associated protein, provides a clear example of XLMR in which phenotypically normal female carriers virtually all have highly skewed XCI biased against the X chromosome that harbors the mutant allele. Here, we have used a mouse model to understand the processes causing skewed XCI. In female mice heterozygous for a null Atrx allele, we found that XCI is balanced early in embryogenesis but becomes skewed over the course of development, because of selection favoring cells expressing the wild-type Atrx allele. Unexpectedly, selection does not appear to be the result of general cellular-viability defects in Atrx-deficient cells, since it is restricted to specific stages of development and is not ongoing throughout the life of the animal. Instead, there is evidence that selection results from independent tissue-specific effects. This illustrates an important mechanism by which skewed XCI may occur in carriers of XLMR and provides insight into the normal role of ATRX in regulating cell fate.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700