Numerical simulation of a blanket cooling system for fusion reactor based on PWR conditions
详细信息    查看全文
文摘
The simulations of a blanket cooling system were presented to address the choice of cooling channel geometry and coolant input data which are related to blanket engineering implementation. This work was performed using computer aided design (CAD) and computational fluid dynamics (CFD) technology. Simulations were carried out for the blanket module with a size of 0.6 m ¡Á 0.45 m in toroidal plane, and the nuclear heat was applied on the cooling system at Pn (neutron wall load) of 5 MW/m2. The structure factors and input data of hydraulics were investigated to explore the optimal parameters to match the PWR condition. It was found that the inlet velocity of first wall (FW) channel should be within the range of 2.48-3.34 m/s. As a result, the temperature rise (TR) of the coolant in the FW channel would be 24-25 K. This leads to the remaining space for TR within the range of 15 K in the piping circuits. It also indicated that the FW plays an important role in TR (reaches 60 % of the whole cooling system) due to its high level of Pn and heat flux in the zones. It was predicted that the nuclear heat inside blanket module could be removed completely by the piping circuits with an acceptable pipe bore and the related input data. Finally, a possible design range of cooling parameters was proposed in view of engineering feasibility and blanket neutronics design.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700