Local electronic structure at organic-metal interface studied by UPS, MAES, and first-principles calculation
详细信息    查看全文
文摘
Understanding and controlling local electronic structures at organic–metal interfaces are crucial for fabricating novel organic-based electronics, as in the case of heterojunctions in semiconductor devices. Here, we report recent studies of valence electronic states at organic–metal interfaces (especially those near the Fermi level of a metal substrate) by the combined analysis of ultraviolet photoemission spectroscopy (UPS), metastable atom electron spectroscopy (MAES), and first-principles calculations. New electronic states in the HOMO (highest occupied molecular orbital)–LUMO (lowest unoccupied molecular orbital) gap formed at an organic–metal interface are classified as a chemisorption-induced gap state (CIGS) and a complex-based gap state (CBGS). The CIGS is further characterized by an asymptotic feature of the metal wave function in the chemisorbed species. The CIGSs in alkanethiolates on Pt(1 1 1) and C60 on Pt(1 1 1) can be regarded as damping and propagating types, respectively. The CBGSs in K-doped dibenzopentacene (DBP) are composed of DBP-derived MOs and K sp states and distributed over the complex film. No metallic structures were found in the K1DBP and K3DBP phases, suggesting that they are Mott–Hubbard insulators due to strong electron correlation. The local electronic structures of a pentacene film bridged by Au electrodes under bias voltages were examined by an FET-like specimen. The pentacene-derived bands were steeply shifted at the positively biased electrode, reflecting the p-type character of the film.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700