Mechanism of the superenhanced light transmission through 2D subwavelength coaxial hole arrays
详细信息    查看全文
文摘
By using FDTD numerical simulations, we show that mechanism that is different from surface plasmon polaritons set up by the periodicity at the in-plane metal surfaces may account for the superenhanced light transmission through coaxial hole arrays. We propose that resonant cavity-enhanced light transmission is responsible for it. When an axis is introduced into a hole, slits of definite length are formed. We suppose that a coaxial hole will support the standing waves of Fabry–Pérot-like modes with frequency higher than its cutoff frequency if its gap is small enough in comparison to the wavelength of the incident light and if the metal film is thick enough.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700