Design of ceramic filters using Clay/Sawdust composites: Effect of pore network on the hydraulic permeability
详细信息    查看全文
文摘
Clay based ceramic composite materials with hydraulic permeability were elaborated using sawdust as porogent agent. Their mechanical, morphological, microstructural and pore network properties were investigated. Mixtures in various ratios of two kaolinite clay minerals, Ba (highly plastic) and Va (sand-rich) constitute the five ceramic matrixes studied (CM1, CM2, CM3, CM4 and CM5). Due to their high flexural strength, CM3 and CM4 received 0%, 5%, 10% and 15% sawdust before firing, to improve the porosity of the final matrixes. Results revealed that 900–1000 °C is the range of temperature necessary to get good sintering and flexural strength (≥2 MPa). A typical clay-sawdust based materials (parallepipedic bricks) present porosity ≥40 vol% and 1.5 g/cm3 density. Characterizations such as FTIR, SEM, MIP and flow permeability of ceramic candles were performed. A Hydraulic permeability of ~10 mDarcy was obtained and the mean pore diameter varies from 0.05 to 0.1 µm, in agreement with the microstructure exhibited by the ceramic candles. In the presence of sawdust, pores with size up to 10 µm were observed, justifying the increase of flowing permeability. The elaborated matrixes are promising candidates for microfiltration.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700