CFD modelling of the cross-flow through normal triangular tube arrays with one tube undergoing forced vibrations or fluidelastic instability
详细信息    查看全文
文摘
A CFD methodology involving structure motion and dynamic re-meshing has been optimized and applied to simulate the unsteady flow through normal triangular cylinder arrays with one single tube undergoing either forced oscillations or self-excited oscillations due to damping-controlled fluidelastic instability. The procedure is based on 2D URANS computations with a commercial CFD code, complemented with user defined functions to incorporate the motion of the vibrating tube. The simulation procedure was applied to several configurations with experimental data available in the literature in order to contrast predictions at different calculation levels. This included static conditions (pressure distribution), forced vibrations (lift delay relative to tube motion) and self-excited vibrations (critical velocity for fluidelastic instability). Besides, the simulation methodology was used to analyze the propagation of perturbations along the cross-flow and, finally, to explore the effect on the critical velocity of the Reynolds number, the pitch-to-diameter ratio and the degrees of freedom of the vibrating cylinder.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700