Moth-eye effect in hierarchical carbon nanotube anti-reflective coatings
详细信息    查看全文
文摘
Optical anti-reflection is achieved in natural surfaces by exploiting hierarchical surface morphology. Here, we show that single-walled carbon nanotube (SWCNT) coatings deposited on silicon (Si) realize a broad-band, omnidirectional, and nearly polarization-independent suppression of Si optical reflection, with an increase of film absorption. This is attributed to a biomimetic, hierarchical surface morphology, which introduces a graded refractive index–the so-called moth-eye effect. Moreover, the anti-reflective behavior can be tuned by varying the SWCNT film thickness. The SWCNT random networks are realized by a simple, rapid, reproducible, and inexpensive solution-processing technique and deposited on Si by a dry-transfer printing method, at room temperature. The technology may be used to coat arbitrary substrates such as optical instruments, radiometric applications, light and thermal sensors, solar cells, and light emitting diodes; thus improving the device absorption or emission of light, due to the film optical properties.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700