Dynamics and control of solar thermochemical reactors
详细信息    查看全文
文摘
A general dynamic model for solar-driven thermochemical processes is formulated based on unsteady mass and energy conservation equations coupled to the reaction kinetics. It is applied to two pertinent high-temperature thermochemical reactors for fuel production that make use of concentrated solar energy as the source of process heat, namely: an indirectly irradiated batch-operated packed bed reactor for the carbothermic reduction of zinc oxide, and a directly irradiated continuously operated particle flow reactor for the steam-gasification of petcoke. Model parameter identification and validation is accomplished by comparing numerically simulated and experimentally measured temperatures and outlet product concentrations. A linear feedback controller was implemented using the LQG/LTR design method. Simulations of the controlled reactor system with real solar irradiation data indicates improved quality and steadiness of product composition throughout transient solar input phases and superior solar-to-chemical energy conversion efficiency.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700