Incorporation of trivalent actinides into calcite: A time resolved laser fluorescence spectroscopy (TRLFS) study
详细信息    查看全文
文摘
In order to characterize and quantify the substitution of Ca(II) by Cm(III) (coordination, charge compensation), homogeneous Cm(III) coprecipitated calcite was synthesized in a mixed-flow-through experiment. Two sets of experiments were conducted at pH 8.1 and at pH 12.5.

At pH 8.1 two calcites, a calcite with a low Cm3+ concentration (LCMpH8.1) and a calcite with a high M3+ (Gd3+ and Cm3+) concentration (HCMpH8.1) were grown and investigated by time resolved laser fluorescence spectroscopy. The Cm(III) emission spectra of LCMpH8.1 and HCMpH8.1 show the same Cm(III) fluorescence signals for two Cm(III) species; Cm(III) species (1) with a peak maximum at 606.2 nm and Cm(III) species (2) with a peak maximum at 620.3 nm. Cm(III) species (1) has a mean lifetime of τ = 386 ± 40 μs and Cm(III) species (2) has a mean lifetime of τ = 1874 ± 200 μs. A lifetime of 386 μs correlates with 1.3 water molecule in the first coordination sphere of the Cm ion whereas a lifetime of 1874 μs indicates the total loss of the Cm(III) hydration sphere. According to the fluorescence emission peak position and the fluorescence emission lifetime, Cm(III) species (1) is identified as a surface sorbed species whereas Cm(III) species (2) is identified as a Cm(III) incorporated into the calcite lattice.

Cm(III) fluorescence emission spectra of Cm(III) doped calcite grown at pH 12.5 (LCMpH12.5) show the same peak maxima which are found for LCMpH8.1 and HCMpH8.1 grown at pH 8.1 but an additional emission band at 608.2 nm (3) is found, which can be assigned to a further Cm(III) species. Fluorescence emission lifetime measurements show that this Cm(III) species (3) has a lifetime of τ = 477 ± 25 μs, which correlates with 0.9 water molecules in the first coordination sphere. Cm(III) species (3) is suggested to be a CmOH2+ incorporated species.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700