Laser Chemical Processing (LCP) of Poly-Silicon Thin Film on Glass Substrates
详细信息    查看全文
文摘
Laser chemical processing (LCP), based on the patented LaserMicroJet technology by Synova? S.A, was introduced by Fraunhofer Institute for Solar Energy Systems (Fraunhofer ISE), as a novel approach for selective doping for high efficiency (> 20 % ) silicon wafer solar cells. The technique consists of coupling a laser beam into a highly pressurised thin liquid jet. Total reflection inside the liquid jet enables laser light to be wave-guided towards the sample of interest. If the liquid contains a dopant source, selective doping is possible via the laser-induced, physical and chemical interactions of the substrate and doping medium. To date, this process was primarily investigated for silicon wafer solar cells. In this work, we report on a novel application of LCP for n-type doping of poly-silicon thin films on glass substrates. By using phosphoric acid as the doping medium, we have successfully realised n-type doping of poly-silicon thin films through LCP. Proof-of-principle experimental results are promising in terms of sheet resistance (< 5 k¦¸/¡õ) and active dopant concentration of 5x1018 to 1x1019 cm-3 at a doping depth of less than 250 nm as measured by electrochemical capacitance-voltage (ECV) profiling. The obtained sheet resistance and doping concentration levels of LCP doped areas opens a new frontier for LCP processing. In the future, the LCP technique will be applied to fabricate back surface fields (BSF) for poly-silicon thin film solar cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700