Restrain recombination by spraying pyrolysis TiO2 on NiO film for quinoxaline-based p-type dye-sensitized solar cells
详细信息    查看全文
文摘
In this work, we reported two new quinoxaline-based sensitizers (BQI and BQII) for p-type dye-sensitized solar cells (p-DSSCs) featuring carboxylic acid and pyridine as anchoring groups, respectively, in combination with triphenylamine donor. The optical, electrochemical and photovoltaic properties of BQI and BQII were investigated. Results showed that BQI-based p-DSSC with carboxylic acid anchoring group obtained higher photoelectric conversion efficiency (PCE) of 0.140%. To further optimize the device performance, we added a layer of TiO2 on the surface of NiO film as a barrier layer, which contributed to the improvement of the photocurrent density from 3.00 to 3.84 mA cm−2. The p-DSSCs based on BQI reached the PCE of 0.20% at an irradiance of 100 mW cm−2 simulated AM1.5 sunlight. Electrochemical impedance spectroscopy (EIS) analysis indicated that the hole recombination resistance of p-DSSCs with TiO2 barrier layer was larger than that of the naked NiO film. Meanwhile, the surface profile of TiO2 on NiO film was verified by scanning electron microscope (SEM), X-ray diffraction (XRD) and the time of flight-secondary ion mass spectrometry (TOF-SIMS).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700