A novel ferrocenium salt as visible light photoinitiator for cationic and radical photopolymerization
详细信息    查看全文
文摘
A novel hybrid photoinitiator for visible light photopolymerization, (η6-3-benzoyl-4-chlorodiphenylamine) (η5-cyclopentadienyl) iron hexafluorophosphate (Fc-NBP), was synthesized and studied. Its absorption in the UV and visible light regions showed much stronger activity than those of either the commercialized cationic photoinitiator I-261 or the conventional free radical photoinitiator benzophenone, especially above wavelengths of 350 nm. When exposed to visible light, the photoinitiator under study initiates both cationic polymerization and radical polymerization. The photoinitiator's abilities in the photopolymerization of acrylates and epoxides were evaluated by near infrared (NIR) spectroscopy. The results from NIR clearly indicate that Fc-NBP exhibited high efficiency in photopolymerizing acrylate monomers. In the same lamp, however, benzophenone showed no photoinitiating ability. The photopolymerization rate of the diglycidyl ether of the bisphenol-A epoxy (DGEBA) oligomer was found to be slower than that of acrylates when using Fc-NBP as the photoinitiator. This study shows that the polymerization of epoxide DGEBA can be speeded up by adding a photosensitizer benzoyl peroxide (BPO), but BPO and tertiary amines do not affect the free radical photopolymerization of tripropylene glycol diacrylate (TPGDA). We conclude by providing a possible photoinitiation mechanism.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700