High porous yttria-stabilized zirconia with aligned pore channels: Morphology directionality influence on heat transfer
详细信息    查看全文
文摘
High porous yttria stabilized zirconia with unidirectionally aligned channels is used in engineering applications with extremely low thermal conductivity. This property is strongly influenced by microstructure features such as pore volume fraction, pore size distribution, random porous microstructure and pore morphology directionality. Although several models are reported in the available literature, but their analytical formulas are formalised for homogeneous structures or they are based on proportion between solid and fluid phases. These differences from real microstructures cause significant computational errors especially when thermal conductivity changes as the function of the measurement direction (parallel or perpendicular). In this context, the application of an intermingled fractal unit's procedure capable of reproducing porous microstructure as well as predicting thermal conductivity has been proposed. The results are in agreement with experimental ones measured for parallel and perpendicular directions and suggest improving the formalisation of fractal modelling in order to obtain an instrument of microstructure design.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700