Hydrogen production aided solid oxide electrochemical reformer fed with octane: A theoretical analysis
详细信息    查看全文
文摘
In the present work the possibility of pure hydrogen production by a solid oxide electrochemical reformer (SOER) is examined. Initial reagents are water steam, flowing into the cathode channel and octane flowing into the anode channel. Three modes of reforming are considered: (i) steam reforming (SR-mode), (ii) preliminary octane partial oxidation (PO-mode) and (iii) preliminary octane reforming by exhaust anode gas recycling (EAGR-mode). A parametric analysis is carried out that can be easily applied for various hydrocarbons. It was found that the electromotive force (EMF) value depends mainly on the ratio of steam moles’ number supplied to the cathode space to the number of hydrogen output moles (k-parameter). It was also found that EMF increases with k increase, while is weakly affected from the temperature and the heat losses amount. Moreover, the EMF average value under the PO-mode is lower than that under the SR-mode. Finally, it is shown that the SOER optimum characteristics can be reached under the EAGR-mode, since it provides the most favorable combination of the reforming efficiency and the rate of the electrochemical process.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700