Evaluating the influence of lake morphology, trophic status and diagenesis on geochemical profiles in lake sediments
详细信息    查看全文
文摘
Recent geochemical studies provide evidence that changes in vertical distributions of nutrients in lake sediments are driven by anthropogenic activities, based primarily on trends of increasing concentrations in upper sediment layers. However, the present study shows that vertical concentration profiles of C, N and P in lake sediments can be higher in the upper, most recently deposited sediment strata, driven largely by natural diagenetic processes and not eutrophication alone. Sediment cores from 14 different lakes in New Zealand and China were examined ranging from oligotrophic to highly eutrophic and shallow to deep, and it was found that the shape of vertical profiles of total P, a key nutrient for lake productivity, can be similar in sediments across gradients of widely differing trophic status. Empirical and mechanistic diagenesis steady state profile models were derived and applied to describe the vertical distribution of C, N and P in the sediments. These models, which focus on large scale temporal (decades) and spatial (up to 35 cm in the vertical) processes, revealed that density-differentiated burial and biodiffusive mixing, were strongly correlated with vertical concentration gradients of sediment C, N and P content, whereas lake trophic status was not. A sensitivity analysis of parameters included in the diagenetic model further showed that the processes including flux of organic matter to the sediment–water interface, burial (net sedimentation), breakdown of organic matter and biodiffusion all can significantly influence the vertical distribution of sediment P content. It was concluded that geochemical studies attempting to evaluate drivers of the vertical distribution of sediment C, N and P content in lake sediments should also account for the natural diagenetic drivers of vertical concentration gradients, assisted with application of similar models to those presented in this study. This would include quantification of key sediment diagenesis model parameters to separate out the influence of anthropogenic activities.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700