An in vitro model to assess pneumococcal adherence to nasopharyngeal cells under competition conditions
详细信息    查看全文
文摘
Pneumococcal conjugate vaccine (PCV7) reduces invasive disease and carriage caused by vaccine serotypes (VS). An increase in carriage and disease with non-vaccine serotypes (NVS) has been observed. We have developed an in vitro model with human nasopharyngeal (NP) epithelial cells (Detroit 562) to assess the adherence capacity of Streptococcus pneumoniae to NP cells in the presence or absence of a competing Pnc strain. Two hundred and fifty pneumococcal (Pnc) strains (10 strains per serotype for 7 VS and 18 NVS) were tested for their opacity phenotype. Strains exhibiting (≥ 50 % ) the transparent phenotype (n = 72) were evaluated for their adherence capacity to Detroit 562 cells. Mean adherence capacity (≥ 129 CFU/well) to NP cells was high for VS 18C, 4, and 9V and for NVS 16F, 10A, and 6A. In the in vitro competition experiments, VS strains out-competed (42/108) or co-existed (43/108) with NVS strains for adherence to NP cells in most co-inoculations. By contrast, NVS (15C, 16F, 31, and 35B) out-competed with VS in only 9 of 108 co-inoculations. Serotype 16F out-competed or co-existed with some VS and NVS strains. This model may be used to identify Pnc strains of a given serotype with competitive potentials for replacement of VS in the nasopharynx and to screen Pnc strains for animal colonization models.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700